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Abstract

The urban heat island effect (UHI) causes serious harm to human health and beyond and is
unevenly distributed across American cities. Specifically, demographic trends point to dispro-
portionate burden among certain groups, such as low-income individuals, renters, and people of
color. This report seeks to provide a rigorous spatial analysis of these trends in Minneapolis-
St. Paul and Phoenix and to compare model similarity and performance between these two
cities. Our analysis confirms that race, income, and house value are significantly connected to
UHI distribution, but individual spatial models can help to pinpoint unique distribution patterns
by city that can then be used to inform policy implementation.



1 Introduction

The Urban Heat Island effect (UHI) is a phenomenon that occurs when urban areas have higher
temperatures compared to the surrounding rural landscapes. This thermal contrast results from
a combination of human activities, urban infrastructure, and a lack of greenery in the form of
trees, parks, and other vegetation (1). Specifically, the heavy presence of pavement, concrete, and
buildings re-emit the sun’s heat at rates greater than the surrounding areas. These impervious
surfaces absorb more heat and allow less ground storage of rainfall, creating an “island” of high
temperatures. This process can be seen below.
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Figure 1: Diagram modeling the process underlying the urban heat island. From DENIAL101x,
2.4.2.1: Heat in the City, with Kevin Cowtan.

In the United States overall, daytime temperatures in urban areas are about 1-7°F higher than
those in outlying areas and nighttime temperatures are about 2-5°F higher. In addition to diurnal
variations, UHI varies seasonally, reaching its zenith in summertime during the day due to the direct
overhead proximity of the sun. This has several extremely harmful effects, including increased
incidences of heat-related illnesses (2), longer and more severe heat waves, higher energy costs,
harmful effects on aquatic ecosystems (3), and unpleasantly hot living situations for much of the
summer (4). Furthermore, the spatial distribution of UHI both between and within cities is uneven.
In the United States, cities in the Southwest tend to exhibit the highest effects of UHI, while
those in the Midwest tend to exhibit the lowest (5). Additionally, UHI distribution within cities,
specifically when analyzed through the lens of natural vegetation and greenspace, covaries with a
number of factors, such as age, socioeconomic status, race, ethnicity, and income. UHI also exhibits
significantly higher values in formerly redlined neighborhoods—areas which were designated by the
Home Owners’ Loan Corporation (HOLC) as “risky” investments largely on the basis of their racial
and ethnic composition between 1933-1954 and face ongoing disinvestment (6). Thus, studying the
spatial distribution of UHI within American cities is crucial in understanding if inequities persist
and informing future policy decisions surrounding the mitigation of their harmful effects.



1.1 Research Questions

To shed light on these issues, we seek to identify which demographic factors are related to the
spatial distribution of UHI within American cities and to better understand how these factors vary
city by city. Spatial analysis can provide insights into the multi-faceted ways in which social and
economic demographics are connected to ongoing environmental harms, such as UHI. Thus, we
engage in a two-part analysis: first, we create individual spatial models of UHI distribution for two
cities from different regions of the United States, then compare model similarity and performance
across selected cities. Developing these models and carrying out comparative analysis is crucial for
identifying vulnerable communities that may be disproportionately affected by higher temperatures,
which can then allow for targeted policy interventions to mitigate potential health risks associated
with extreme heat exposure. Addressing these disparities not only fosters more equitable living
conditions but also promotes overall community well-being, resilience, and the creation of healthier
urban environments for all residents.

1.2 Data Sources

We incorporate data related to UHI from United States Surface Urban Heat Island database (7).
This dataset includes land surface temperature and the calculated UHI both seasonally and di-
urnally across major American urban areas. This dataset empirically calculates UHI, taking into
account measures of land surface temperature gathered from satellite imaging, surface reflectance,
elevation and land cover data, and tree canopy. The value of these factors combined is then sub-
tracted from the calculated UHI of surrounding rural areas. Thus, a negative UHI indicates urban
cooling, meaning that the urban area exhibits a low heat index compared to the rural average.
Conversely, positive values indicate the presence of UHI.

We also utilized the 2019 American Community Survey (ACS) for demographic and socioeconomic
measurement, started by the U.S. Census Bureau in 2005. This survey gathers information on social,
economic, housing, and demographic facets by surveying roughly 3 million households annually
using detailed questionnaires. Through its comprehensive data, the ACS offers extensive insights
into the U.S. population, facilitating analyses and estimations regarding housing market trends and
demographic patterns (8).

1.3 City Selection

Due to the disparity that has been identified between cities in Midwest and the Southwest, we
choose to analyze one city from each region (5). Our objective is to compare model similarity and
performance across selected cities and to see if we can identify a difference in important spatial-
demographic factors that underlie UHI between the two cities. Due to data availability and personal
interest, we choose Minneapolis-St. Paul and Phoenix as the two cities of study.

The above figure shows the spatial layout of the average UHI during summer days in Minneapolis-
St. Paul and Phoenix. In the Twin Cities, high levels of UHI can be seen in the downtown areas of
both Minneapolis and St. Paul, while outlying areas tend to exhibit lower effects. In Phoenix, much
of downtown exhibits high UHI although there are some tracts in higher-income parts of the area
that experience significantly lower effects. It is important to note that, although it is seemingly
counterintuitive, the range of UHI in Minneapolis-St. Paul tends toward much more positive values
than Phoenix. This is due to the difference in vegetation levels of the surrounding rural areas in


https://data.mendeley.com/datasets/x9mv4krnm2/3
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UHI as measured by difference in composite score between surrounding rural areas in Minneapolis—St.Paul and Phoenix.

Figure 2: Urban heat island measured during summer 2019 in Minneapolis-St.Paul and Phoenix

the Twin Cities compared to Phoenix—the former is largely composed of coniferous and deciduous
forest, the latter is primarily desert, and thus has a much higher baseline UHI.

2 Methods

We begin by extracting relevant census data from the 2019 ACS; guided by the literature, we
consider age, birthplace, race, ethnicity, income, home value, and predominant industry by census
tract in the model building process. For each of the cities studied, we use a random forest model to
aid in the variable selection process (9), with summer day UHI the outcome variable. Additionally,
we create maps and other visualizations to understand the spatial relationship of each predictor and
to ensure that we avoid repeated information in the model. For example, the proportion of White
residents and proportion of Black residents are highly correlated, as they both provide information
about the racial makeup of the census tracts. Similarly, variables like home value and income
are highly correlated; confirming potential instances of multicollinearity using maps is crucial in
ensuring that there is no repeated information in the model.

2.1 Random Forest

In the Twin Cities, the random forest shows that proportion of Black residents, proportion of White
residents, and proportion of residents born in-state of census tracts are the most highly predictive
variables; in Phoenix, it shows that proportion of Black residents, proportion of White residents,
and average income of census tracts are the most highly predictive. This confirms the findings of
previous literature: race is a particularly strong predictor of UHI, particularly in predominantly



Black neighborhoods, which tend to be positively associated with UHI. Additionally, we find that
measures of the wealth of a census tract are important predictors in UHI. In Minneapolis-St. Paul,
income, average home value, proportion of residents owning their own home, and proportion of
residents who work in manufacturing and industrial sectors were all moderately strong predictors
of UHI. In Phoenix, many of the predictors held similar predictive power including average home
value, proportion of residents born in-state, age, and proportion of residents owning their own
home. These factors were taken into account in the model creation, balancing predictive power and
the need to eliminate overlapping information between predictors.

2.2 Mean Model

Following the determination of the most relevant variables in each city, we fit OLS models using
combinations of these predictors and analyze goodness of fit, individual predictor significance, and
overall sensibility. Although the spatial data is highly correlated, OLS still provides us with an
initial understanding of coefficient value for each variable, thanks to the unbiasedness of these
estimates. After building the mean model, we use Global Moran’s I to test if the residuals are
independent or not to determine if an additional spatial model is necessary.

2.3 Neighborhood Strucure

In the context of this study, we specifically choose four types of neighborhood structures, including
K Nearest Neighbors (KNN), and Distance Nearest Neighbors, to capture the potential spatial
correlation between census tracts.

The Rook and Queen structures define neighborhood relationships differently in spatial analysis.
The Rook method defines neighbors as polygons that share at least one edge, while the Queen
method takes a more inclusive approach, considering any touching points between irregular polygons
(10). The Queen method offers a broader view of spatial relationships across various shapes and
sizes, making it simpler to implement compared to more complex methods like K Nearest Neighbors
(KNN) or Distance Nearest Neighbors. However, this inclusivity can also be a drawback, as it might
include distant polygons as neighbors without considering their actual distance or characteristics.

In contrast, the Distance Nearest Neighbors approach sets specific minimum and maximum cen-
troid distances to identify neighborhoods. This method can provide a more refined delineation of
neighborhoods, especially in areas with distinct boundary features like highways or bodies of water.
To illustrate the difference, we applied a maximum centroid distance of 3 km. The Queen struc-
ture displays a more uniform distribution across neighborhoods, while the distance-based structure
highlights neighboring correlations mainly in the central area, leaving the surrounding regions more
isolated.

24 SAR vs CAR

To account for spatial autocorrelation, we can use either Simultaneous Autoregressive (SAR) and
Conditional Autoregressive (CAR) models. Both models are used following a Global Moran’s I
value indicating that the residuals of the OLS model are spatially correlated (11). SAR models
account for this autocorrelation by incorporating the weighted average of neighboring observations
for each spatial unit. Thus, SAR would effectively model the UHI as a function of the UHI of
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Figure 3: Four types of neighborhood structures used to access the spatial correlation in
Minneapolis-St.Paul and Phoenix



neighboring census tracts (12). CAR, on the other hand, models autocorrelation in a more local
setting, taking into account the average value of predictors in neighboring units. A CAR model in
this context would effectively model the UHI as a function of the average of relevant predictors,
such as income, of neighboring tracts.

3 Modeling Results

With a thorough understanding of SAR and CAR models, we implement both types of models on
all four neighborhood structures and choose the final model based on the lowest BIC index, serving
as an estimate of a model’s predictive power (13).

Starting with the final spatial model for the Twin Cities, we conclude that the SAR model using
the Queen neighborhood structure performs the best, reflected by the smallest BIC index among
all. Analyzing the model’s coefficients reveals key insights into the UHI trends within the Twin
Cities.

In regions with a White resident percentage below 75%, a positive correlation is observed, resulting
in a 0.196 increase in the UHI index, indicating a connection between residents of color and a higher
UHI index, while holding other variables constant. Additionally, homes valued below 250k exhibit a
positive correlation with a higher UHI index, with a coefficient of 0.088, compared to those valued
between 250k and 500k. Conversely, houses with values exceeding 500k demonstrate a negative
association with a higher UHI index, marked by a coefficient of -0.377. Moreover, the percentage of
owner-occupied houses significantly contributes to the UHI index, displaying a negative association
with a coeflicient of -0.472, incorporating partial information about the building structure in the
area. Lastly, a slight negative association is observed between the age of residents and a higher
UHI index.

In the context of the Twin Cities, the lambda value of 0.95856, accompanied by a standard error
of 0.012, signifies a strong spatial correlation in the model. Employing the Moran’s I test on
the remaining residuals yields a p-value of 0.002735 (below the 0.05 threshold), indicating some
lingering minor residual correlation not captured by our model. However, the Moran I statistic of
0.0635, proximate to 0, suggests relative spatial randomness in the residuals. The residual map
for the Twin Cities illustrates that rural areas tend to exhibit lower UHI indices, while downtown
areas register higher UHI indices.

Table 1: SAR Model Result for MSP using Queen Neighbor-

hood
Coefficient SE  P-value
Intercept 3.417 0.782 0.000
% Race White (Below 0.75) 0.196 0.093 0.035
House Value (Below 250k) 0.088 0.083 0.288
House Value (Above 500k) -0.377  0.173 0.030
% Owner Occupied -0.472 0.226 0.037
Age -0.018 0.007 0.013

In the context of Phoenix, our analysis, based on the Bayesian Information Criterion (BIC) index,
indicates that the SAR model with a Rook neighborhood structure outperforms other models.
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Figure 4: Residuals after modeling

Notably, the statistically significant variables differ from those in the Twin Cities, contributing to
a more succinct model for Phoenix.

Specifically, in comparison to houses valued below 250k, houses in the 250k to 500k range exhibit a
negative impact on a higher Urban Heat Island (UHI) index, with a coefficient of -0.178. This trend
intensifies further for houses valued above 500k, marked by a coefficient of -0.568. Additionally, the
average age of residents in Phoenix appears to result in a slight decrease in the UHI index.

For Phoenix, the lambda value of 0.93174, with a standard error of 0.0128, implies a strong spatial
correlation within the model. The p-value of 0.1821 (greater than 0.05) for the Moran’s 1 test
on residuals indicates that our model effectively captures the spatial correlation of the UHI index
in Phoenix. The residual maps for Phoenix also suggest a higher UHI index in downtown areas
compared to surrounding rural areas, echoing the conclusions drawn for the Twin Cities.

Table 2: SAR Model Result for Phoenix using Rook Neigh-

borhood
Coefficient SE  P-value
Intercept 0.794 0.272 0.003
House Value (Below 250k) 0.178 0.053 0.001
House Value (Above 500k) -0.390  0.096 0.000
Age -0.007  0.002 0.002

4 Discussion

The model for Minneapolis-St. Paul indicates that there is an association between UHI and the
racial composition, home value, percentage of owner-occupied homes, and age of a given census



tract. Specifically, less White, non-owner occupied, lower home value, and younger census tracts
are predicted to have higher UHI. SAR modelling using distance-based neighborhood structure still
leaves some spatial autocorrelation unaccounted for, indicating that potential improvement could
be made to describe the UHI distribution of Minneapolis-St. Paul using demographic factors. This
remaining spatial autocorrelation is a moderate limitation of the model for Minneapolis-St. Paul;
although coeflicient estimates are unbiased and can still be used to inform targeted interventions,
the exact extent of the overall spatial relationship as it pertains to the predictors remains unclear.

In Phoenix, several mean models performed very similarly, leading to the choice of a relatively
simple linear model. This model indicates that census tracts with a higher value of homes and
that are older on average tend to be predicted to have a lower UHI. SAR modelling using Rook-
based neighborhood structures leads to independent residuals, indicating that there is no remaining
spatial autocorrelation and that the model more accurately describes UHI distribution in Phoenix.
However, although this is the best performing model in terms of limiting BIC and eliminating spatial
autocorrelation, its practical applicability remains somewhat dubious—although it is important to
know that UHI is modulated by age and house value of a census tract in Phoenix, it may be difficult
to pinpoint exact strategies for UHI mitigation in the identified neighborhoods.

Random forest models in both cities show that the racial composition of census tracts, particularly
the proportion of Black residents, and income are crucial factors underlying UHI distribution. Our
model for Minneapolis-St. Paul directly accounts for this difference, whereas the model for Phoenix
does not explicitly include this factor. Furthermore, the model for Minneapolis-St. Paul is more
complex than the model for Phoenix, which only includes two significant predictors. This suggests
that the UHI distribution in Minneapolis-St. Paul is more complicated than that of Phoenix, but
this could in part be due to the differing neighborhood structures used between the two models.

Despite the finding of the random forest that the proportion of Black residents and income highly
predictive of UHI across both cities, they were not found to be significant in the model, and led
to higher BIC. This likely means that, although they are significant predictors of UHI, they may
overlap with other predictors that are included in the model, such as home value in Phoenix. This
finding could also highlight the extent to which the legacy of racial segregation continues to be visible
in American cities, as higher BIC values for these models could be indicative of a fundamentally
inequitable layout of cities that stems from discriminatory practices such as redlining. Further
studies should analyze spatial autocorrelation models as it pertains to the racial makeup of census
tracts and determine if this finding holds true across other cities.

Our analysis provides insight into where future policy interventions could be directed. Foremost,
UHI mapping pinpoints areas in which the effect is the highest and suggests the need for more
investment into urban greenspace and sustainable and eco-friendly buildings. Specifically for the
Twin Cities, we believe that more efforts should be made to improve UHI in underserved and pre-
dominantly Black communities, especially in the central urban areas. For Phoenix, the significant
contribution of house value to the model reflected the unbalanced distribution of income & race,
leading to dramatic differences in UHI compared to rural counterparts. Thus, policy interventions
should focus more on socioeconomically disadvantaged communities with significantly lower average
annual income.



Appendix: Model Input Visualizations
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Figure 5: Model Inputs for Minneapolis-St.Paul
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Figure 6: Model Inputs for Phoenix
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