# Urban Heat Island Distribution: A Spatial Analysis

Wenxuan Zhu & Marshall Roll

### What is an Urban Heat Island?

"Heat islands are urbanized areas that experience higher temperatures than outlying areas. Structures such as buildings, roads, and other infrastructure absorb and re-emit the sun's heat more than natural landscapes such as forests and water bodies. Urban areas, where these structures are highly concentrated and greenery is limited, become 'islands' of higher temperatures relative to outlying areas."





Fuladlu, Kamyar & Riza, Müge & Ilkan, Mustafa. (2018). THE EFFECT OF RAPID URBANIZATION ON THE PHYSICAL MODIFICATION OF URBAN AREA.

# Impacts of Urban Heat Islands

- Increased incidence of heat-related illnesses (Kovats & Hajat, 2007)
- Increase length and severity of heat waves (Broadbent, Scott, Georgescu, 2020)
- Increased air pollution levels (US Department of Energy, 2013)
- Myriad other effects on water bodies, flora and fauna, and energy costs

### **Research Question**

Which demographic factors affect the spatial distribution of urban heat islands within American cities and how do these factors vary city by city?

# Objective

01

Create individual spatial models of UHI distribution for two cities from different regions of the United States

02

Compare model similarity and performance across selected cities

#### **Literature Review**

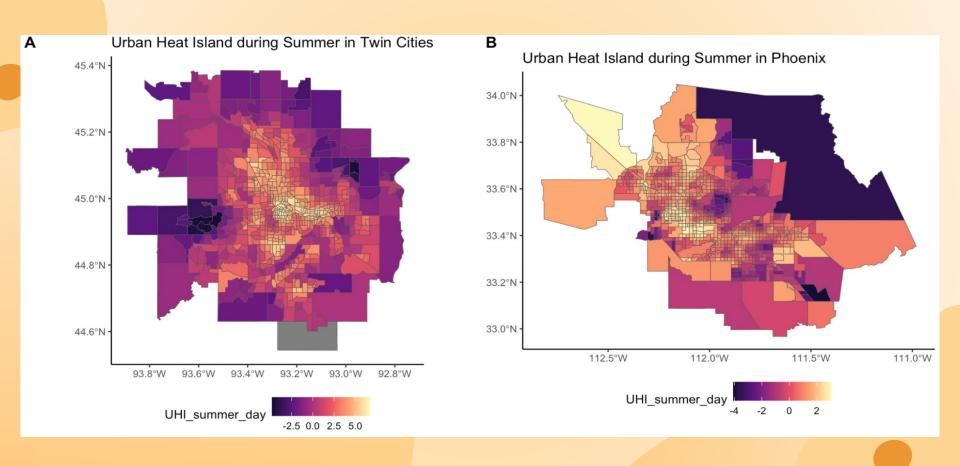
- Age, socioeconomic status, race, ethnicity, and income covary with natural vegetation, greenspace, and higher surface temperatures (Casey et al., 2017)
- Formerly redlined neighborhoods in the United States exhibit a higher average land surface temperature of 2.6 °C (4.68 °F) (Hoffman et al., 2020)

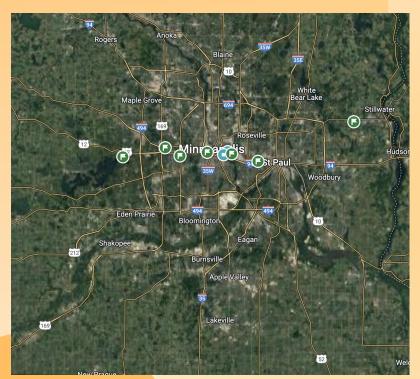
# **City Selection**

- Southwestern cities studied most, exhibit highest UHI effect; Midwestern cities exhibit lowest UHI effect (Hoffman et al., 2020)
- We choose Minneapolis-St.Paul & Phoenix to yield a unique comparative analysis and due to data availability

#### **Data Source**

- 2019 American Community Survey (US Census Bureau)
  - via TidyCensus
- UHI composite effect (Chakraborty et al., 2020)
  - Remote sensing of surface temperature
  - Surface reflectance
  - Elevation & land cover data
  - Tree canopy







Phoenix

Twin Cities

## **Data Cleaning Process**

Joining UHI & census dataset

#### Challenges:

- Missing values complicating join process
- One dataset with geometry, one without
- Incorporation of physical geography

### Variable Selection

- Guided by literature, we consider age, birthplace, race, ethnicity, income, home value, and predominant industry by census tract in model building process
- Individual random forests for Phoenix and Minneapolis-St. Paul and include highest-performing variables

# **Spatial Autocorrelation**

$$Y_i = x_i^T eta + \epsilon_i$$

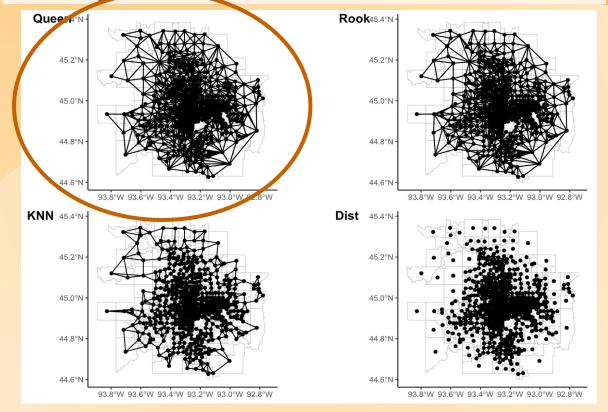
- Account for spatial trends and spatial autocorrelation
  - Trend: Fit a regression model
  - Test the residuals after detrending with Moran's I
- Simultaneous Autoregressive (SAR) model
  - Includes a spatial lag term (pWY\_i), which incorporates the weighted average of neighboring observations for each spatial unit

# Minneapolis-St. Paul

### Variable Selection

- Guided by literature, we consider age, birthplace, race, ethnicity, income, home value, and predominant industry by census tract in model building process
- Random forest shows that proportion of black residents, proportion of white residents, and proportion of residents born in-state of census tracts are most highly predictive variables

### Neighborhood Structure

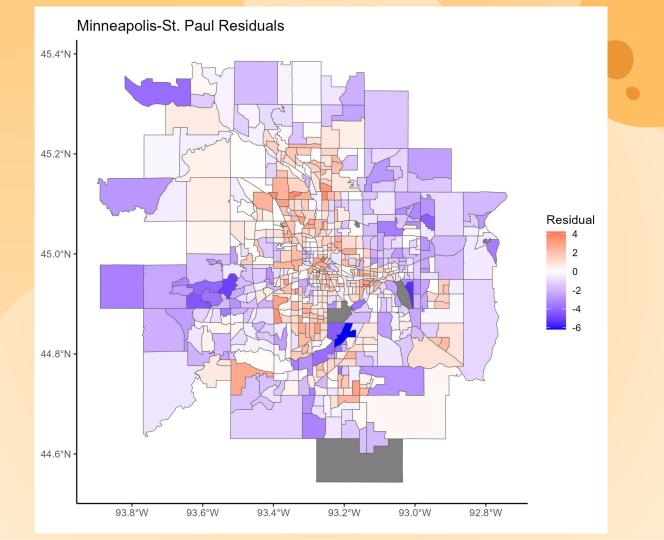


Smallest BIC →

# Final Model: SAR Model (Queen)

|                           | Coefficient | SE    | P-value |
|---------------------------|-------------|-------|---------|
| Intercept                 | 3.417       | 0.782 | 0.000   |
| % Race White (Below 0.75) | 0.196       | 0.093 | 0.035   |
| House Value (Below 250k)  | 0.088       | 0.083 | 0.288   |
| House Value (Above 500k)  | -0.377      | 0.173 | 0.030   |
| % Owner Occupied          | -0.472      | 0.226 | 0.037   |
| Age                       | -0.018      | 0.007 | 0.013   |

- Lambda = 0.93174 (SE = 0.013)
- P-value (Moran I) = 0.002735 → Dependent residual
  - Moran I statistic = 0.064 → Spatial randomness



# Phoenix

### Variable Selection

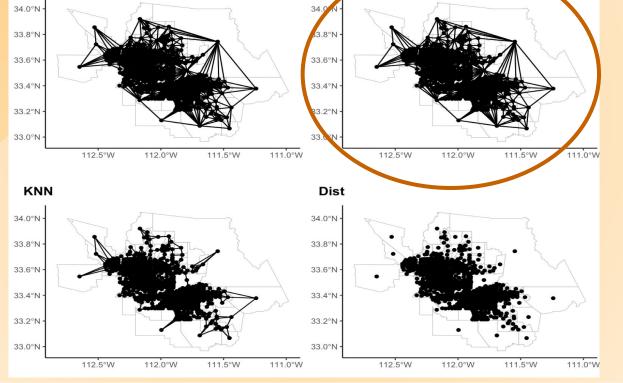
 Random forest shows that proportion of black residents, proportion of white residents, and average income of census tracts are most highly predictive variables

Many linear models perform very similarly to one another

### Neighborhood Structure

Rook

Queen

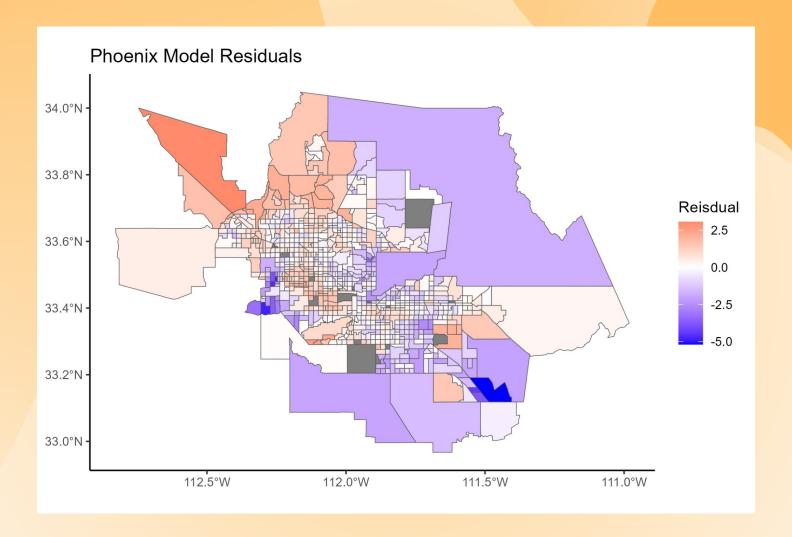


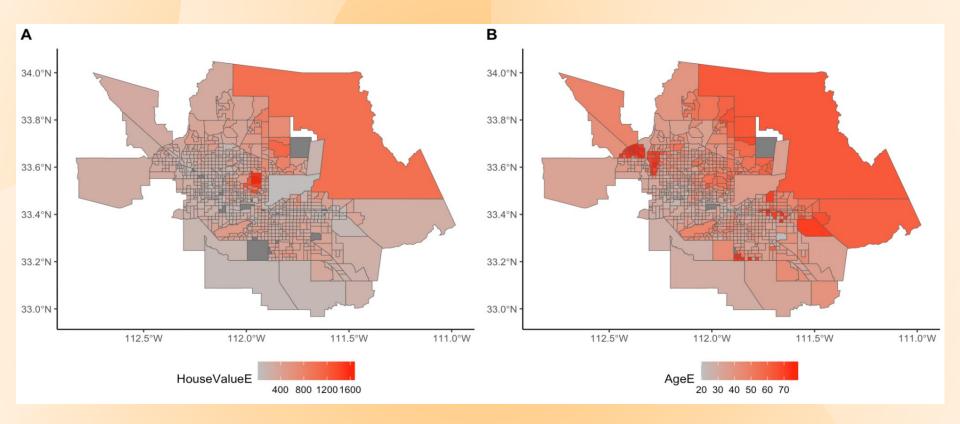
← Smallest BIC

# Final Model: SAR Model (Rook)

|                            | Coefficient | SE    | P-value |
|----------------------------|-------------|-------|---------|
| Intercept                  | 0.996       | 0.254 | 0.000   |
| House Value (250k to 500k) | -0.223      | 0.054 | 0.000   |
| House Value (Above 500k)   | -0.632      | 0.112 | 0.000   |
| Age                        | -0.008      | 0.002 | 0.001   |

- Lambda = 0.95856 (SE = 0.011)
- P-value (Moran I) = 0.1821 → Independent residual :)





# **Model Comparison**

- Phoenix: Simple model, less spatial autocorrelation after SAR
- Minneapolis-St. Paul: Complex model, more spatial correlation remaining
- Proportion of black residents & income highly predictive of UHI, but not significant in model and lead to higher BIC

### Conclusion

- UHI is associated with race and income in both cities
- Spatial distribution of UHI varies by strength and type of demographic predictors between Minneapolis-St.
   Paul and Phoenix
- Can inform policy interventions to mitigate UHI and increase urban greenspace in underserved areas
  - Demographic factors & Income

# Thank you:)