Selecting a sparse set of important
features from high-dimensional data to
enhance clustering: an R implementation

Git Repo: https://github.com/wx-zhu/ClustVarSelect

Team Members :
Zhiyuan Yu(zyyu@umich.edu),
Wenxuan Zhu (zhuwx@umich.edu),
Adrian Con Garcia (acong@umich.edu)

Introduction

In high-dimensional data analysis, identifying a small subset of features that are most
informative for distinguishing between groups or clusters is crucial. This problem becomes
particularly important in genomic research, where datasets often contain a large number of
variables (e.g., gene/protein expression levels) with a low signal-to-noise ratio. Efficient feature
selection methods help reduce data complexity and improve the performance and
interpretability of various downstream tasks such as clustering, regression, and classification.

This topic is particularly important for scRNA-seq datasets containing thousands of genes, as
the correlation and distance between cells are dominated by noise before any processing. More
specifically, scRNA-seq captures the expression levels of thousands of genes across individual
cells and is frequently used to identify putative cell types after clustering, yet only a small subset
of these genes contributes to specific biological outcomes'. Thus, identifying the correct subset
of discriminating features is crucial not only for improving the accuracy of clustering but also for
effectively identifying cell types and biological programs that could provide insights into novel
therapies.

Unsupervised feature selection is technically challenging due to the absence of true labels, and
previous studies addressed this issue either by certain ranking metrics (e.g., Laplacian score?)
or by using certain optimization frameworks with lasso-like penalties (e.g., sparse PCA?, sparse
k-means*). However, these methods are not scalable to large datasets and sensitive to the
choice of hyperparameter values, which are difficult to determine a priori, such as the number of
clusters in the datasets.

To address these issues, a method called Sparse Manifold Decomposition (SMD) was
recently developed®. SMD offers an interpretable framework for identifying features that best
separate clusters in scRNA-seq data. Despite the existence of other tools for identifying highly


https://github.com/wx-zhu/ClustVarSelect

variable genes, such as SCTransform in Seurat®, SMD presents unique advantages: it ranks
features based on their contribution to separability and is less dependent on the preprocessing
steps required by alternative approaches. Nevertheless, the original implementation of SMD is
constrained by its reliance on traditional k-means clustering, which can struggle with initial
guesses and local minima. While k-means was initially used in SMD, we propose exploring
alternative clustering algorithms, such as power k-means, spectral clustering, or DBSCAN, to
improve its performance and applicability to complex biological datasets.

From this project, we expect to implement and improve the SMD algorithm in R, making it
scalable, efficient, and compatible with other widely-used tools such as Seurat and Scanpy.
Additionally, we aim to propose modifications to the algorithm to address its current limitations
and improve its performance. Ultimately, our goal is to contribute to more efficient genomic data
interpretations, supporting advancements in personalized medicine and therapeutic strategies.

Problem

In high-dimensional data analysis, particularly in genomic research, identifying a subset of
informative features is crucial for reducing noise and improving clustering accuracy. scRNA-seq
datasets, which capture thousands of gene expression levels per cell, often suffer from low
signal-to-noise ratios, making feature selection essential for accurate cell type identification and
downstream analysis. However, the lack of true labels in unsupervised settings presents a
significant challenge.

Existing methods like sparse PCA3, sparse k-means*, and Laplacian scores? are sensitive to
hyperparameters, computationally intensive, and struggle to scale to large datasets such as cell
atlases. These methods also fail to handle the irregular biological structures commonly found in
scRNA-seq data, limiting their applicability for identifying biologically relevant features.

The Sparse Manifold Decomposition (SMD) algorithm® offers a promising solution but is
constrained by its reliance on traditional k-means clustering and its inability to integrate multiple
datasets or handle batch effects. Additionally, the current Python implementation is neither
scalable nor compatible with widely used tools like Seurat® and Scanpy’, necessitating
improvements to enhance its usability and performance.

Algorithms

The ClustVarSelect package implements an integrated approach to feature selection in
high-dimensional biological data through two complementary methodological innovations. At its
core, the package combines power k-means clustering with Bregman divergences for robust
cluster identification, and sparse manifold decomposition (SMD) for discriminative feature



selection. These methods work in concert to address the challenges of analyzing complex
biological datasets, particularly single-cell RNA sequencing data. The power k-means algorithm
provides a stable foundation for identifying underlying data structure, while SMD leverages this
structure to identify biologically relevant features. This implementation builds upon recent
advances in machine learning and bioinformatics, extending them with novel computational and
statistical enhancements.

Power K-means with Bregman Divergence

Core Algorithm Description

The Power K-means clustering algorithm represents a significant advancement over traditional
k-means by incorporating an adaptive annealing scheme through power means. This approach
addresses fundamental limitations of classical k-means clustering, particularly its sensitivity to
initialization and tendency to converge to poor local minima. While techniques like k-means++
have attempted to address initialization challenges, they often struggle as data dimensionality
increases. The power k-means implementation in ClustVarSelect, through the
‘power_kmeans_bregman’ function, extends these capabilities further by incorporating
Bregman divergences for handling exponential family data distributions.

Unlike traditional k-means which employs hard assignments, power k-means utilizes soft
assignments weighted by a power parameter s. In soft assignments, data points are associated
with multiple clusters simultaneously, with their degree of association determined by a weight.
This weight is influenced by s, allowing for a more flexible and nuanced representation of the
data's relationship to the clusters. The initial power parameter s, typically set to -0.5, plays a
crucial role in controlling the annealing process. This parameter, combined with the specified
number of clusters k and various dimension reduction options (PCA, spectral clustering, or no
reduction), creates a more flexible and robust clustering framework.

Optimization Process

The core optimization process demonstrates significant advantages over traditional k-means
through its iterative scheme. Each iteration computes pairwise distances using specified
Bregman divergences, including the standard Euclidean distance, KL divergence for probability
distributions, Itakura-Saito divergence for scale-invariant comparisons, and logistic loss for
binary-like data. These distances are then transformed through power mean operations, which
create a smoother optimization landscape early in the clustering process when s is closer to
zero, allowing for more effective exploration of the solution space. As s decreases, the
assignments gradually become harder, eventually approaching the same objective as k-means
but with superior optimization properties.

A distinctive feature is the dynamic adjustment of the power parameter s during optimization.
Every two iterations, s is decreased according to specific rules: reduction by 0.2 if s > -1.0, or
multiplication by the learning rate eta (default 1.05) if s > -120.0. This gradual reduction



implements an annealing schedule that effectively avoids poor local minima, a common pitfall in
traditional k-means.

Implementation Features

The implementation maintains computational efficiency through vectorized operations while
handling complex calculations. For Bregman divergence computations, specialized functions
ensure numerical stability, particularly for KL and Itakura-Saito divergences where data positivity
is crucial. The algorithm monitors convergence through a threshold parameter, stopping when
cluster assignments stabilize or reach the maximum iteration limit.

Another significant advantage over traditional k-means is power k-means' ability to handle
non-spherical clusters. While traditional k-means assumes spherical cluster shapes due to its
Euclidean distance metric, the power k-means framework, especially with Bregman
divergences, adapts to various cluster geometries more effectively. This flexibility proves
particularly valuable in high-dimensional biological data where cluster shapes may be complex.

The output provides comprehensive analysis capabilities through a structured PowerKmeans
object containing cluster centers, assignments, and dimension-reduced data, supported by
specialized print, summary, and plot methods. The implementation maintains theoretical
guarantees, ensuring all iterates remain within the data's convex hull while minimizing
within-cluster variance.

Following the mathematical framework of Xu & Lange® and incorporating Bregman divergences
as proposed by Vellal et al. (2022), this implementation effectively handles various data
distributions while maintaining computational efficiency through closed-form updates. While it
introduces a modest computational overhead compared to traditional k-means, the superior
clustering quality and robustness make it particularly well-suited for applications where
clustering accuracy is paramount, especially in analyzing complex, high-dimensional biological
data where traditional methods often fall short.

Sparse Manifold Decomposition (SMD) with Power K-means

Core Algorithm Description

The SMD algorithm implemented in ClustVarSelect represents a significant advancement in
feature selection for high-dimensional biological data, particularly single-cell RNA sequencing
data. Building upon the framework introduced by Melton and Ramanathan®, our implementation
combines sparse manifold decomposition with power k-means clustering and Bregman
divergences to identify discriminative features effectively.

The algorithm begins by accepting a high-dimensional input matrix X and a parameter k_guess
specifying the estimated number of clusters present in the data. A key innovation in our
implementation is the integration of parallel processing capabilities, allowing the algorithm to
distribute computational workload across multiple CPU cores. This enhancement is particularly



valuable for large-scale analyses of biological datasets, where computational efficiency is
crucial.

The core methodology proceeds through several carefully orchestrated stages. Initially, the input
features are normalized to ensure comparable scales across different measurements. The
algorithm then employs an ensemble approach, generating multiple cluster proposals through
either agglomerative clustering ("agglo") or power k-means clustering ("kmeans"). The number
of trials defaults to twice the number of features, while the subsampling parameter n_sub
typically uses 80% of the data points for each proposal, striking a balance between
computational efficiency and statistical robustness.

Feature Selection Approaches

For feature selection, SMD implements two distinct classification approaches. The
entropy-based method utilizes decision trees through the “find_classifier_dims_entropy’
function, while the maximum margin approach employs L1-penalized Support Vector Machines
via *find_classifier_dims_maxmargin’. Both methods work to identify features that effectively
discriminate between different clusters, but they approach the problem from different
mathematical perspectives. The entropy-based method is particularly effective at capturing
nonlinear relationships in the data, while the maximum margin approach excels at finding
sparse, linear separating boundaries.

Implementation Features

A crucial aspect of the implementation is its handling of feature importance scores. When
z_score is enabled (default behavior), the algorithm compares the observed feature importance
distribution against a null distribution generated by randomly shuffling the data. This
standardization process, implemented through parallel processing for efficiency, helps
distinguish genuine discriminative features from those that might appear important by chance.
The “shuffle_data’ function carefully preserves the marginal distribution of each feature while
breaking inter-feature relationships, providing a robust null model for significance assessment.

The algorithm incorporates sophisticated convergence monitoring through a threshold
parameter that checks for stability in cluster assignments. This approach helps ensure that the
identified features are robust and not artifacts of premature convergence. The implementation
also includes careful input validation and type checking to ensure reliable operation across
different data types and experimental conditions.

For the classification step, the "one_tree’ function implements a single-level decision tree
approach to identify the most discriminative feature between any pair of clusters. Similarly, the
‘one_plane’ function employs L1-penalized SVM to find features that maximize the margin
between cluster pairs. These complementary approaches allow the algorithm to capture
different aspects of feature importance, particularly valuable in complex biological datasets
where multiple types of discriminative patterns may be present.



The output is structured as a ClustVarSelect object, providing a comprehensive view of the
feature selection results. This includes not only the raw feature importance scores but also
detailed statistics and rankings that help researchers interpret and validate the results. The
implementation includes specialized print and summary methods that facilitate easy access to
key findings and statistics.

Implementation Advances

Following Melton and Ramanathan's framework, our implementation brings several significant
innovations to advance feature selection in high-dimensional biological data analysis. The core
enhancement incorporates power k-means clustering with Bregman divergences, enabling
robust analysis of complex biological data distributions. This is complemented by a flexible input
framework that supports multiple data formats commonly used in bioinformatics workflows,
including regular matrices, sparse matrices (dgCMatrix), SingleCellExperiment objects, and
Seurat objects in ‘power_kmeans_bregman’ function. The implementation intelligently handles
these different formats, automatically selecting appropriate data layers and preprocessing steps
based on the input type and user preferences.

The algorithmic architecture implements sophisticated dimension reduction options, allowing
researchers to choose between PCA, spectral clustering, or direct analysis without reduction.
This flexibility is particularly valuable when working with different types of biological data that
may require specific dimensional analysis approaches. The implementation supports various
Bregman divergences (Euclidean, KL, ltakura-Saito, and logistic), enabling effective handling of
different data distributions commonly encountered in biological research.

A major technical advancement is the integration of parallel processing capabilities optimized for
large-scale datasets. The implementation automatically detects available computational
resources and efficiently distributes workloads across multiple CPU cores, particularly beneficial
for computationally intensive operations such as feature importance calculation and null
distribution generation. This parallel framework carefully manages random seed generation to
ensure reproducibility while maintaining computational efficiency.

The statistical robustness of the implementation is enhanced through comprehensive quality
controls and sophisticated feature importance assessment methods. The standardization
process utilizes efficient parallel computation of null distributions, offering both standardized
(z-score) and raw importance scores. This methodological approach ensures reliable feature
selection even in the challenging context of noisy, high-dimensional biological data, where
distinguishing genuine signals from background variation is crucial.

These innovations collectively represent a significant advancement in feature selection
methodology, particularly for single-cell RNA sequencing data analysis. The combination of
sophisticated statistical approaches, efficient computational implementation, and careful
consideration of biological data characteristics makes it a powerful tool for modern
high-dimensional data analysis in computational biology.



The effectiveness of this integrated approach has been validated through extensive testing on
both synthetic data and real biological datasets, as documented in the original publications. The
package provides comprehensive S3 methods for visualizing and interpreting results, including
methods for printing, summarizing, and plotting the clustering and feature selection outcomes.
These tools make it easier for researchers to interpret and validate their results, supporting the
broader goal of identifying biologically meaningful features in complex, high-dimensional data.

This implementation represents a significant advance in the field of feature selection for
high-dimensional biological data. By combining robust clustering methods with sophisticated
feature selection approaches and integrating them with modern bioinformatics tools, the
package provides a powerful and flexible toolkit for researchers working with single-cell RNA
sequencing data and other high-dimensional biological datasets.

Results

To test the correctness and efficiency of our implementation of the Bregman power K-means, we
weermmner SiIMulated some synthetic datasets with varying sample sizes, feature
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Seurat and SMD's top feature sets. gastrulation’. We set the cluster number to be equal to

the actual number of clusters annotated in that dataset,

and we used SCVI* to obtain the batch-free latent space.
We then used the Euclidean version of the Bregman power k-means, since we didn’t see
significant differences between different divergence measures before, to cluster the dataset in
the latent space. Our current implementation takes roughly 3 minutes on such a large dataset.
Our Bregman power k-means performs reasonably well in identifying most of the major cell
types (Fig 6). Although the mesoderm clusters identified by our Bregman power k-means are
slightly different from the reference annotation, we think that it is reasonable because, at this



stage of development, different mesodermal
clusters are less distinguishable from each
other.

However, when we attempted to run SMD
on such a large dataset, it took hours to run
and didn’t significantly outperform Seurat, even
after we parallelized the algorithm. While both
the Bregman power K-means and SMD
perform well on simple datasets, they still
struggle to handle more complex atlas-level
datasets. Overall, we conclude that our
implementation of the Bregman power
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K-means and SMD behaves as expected, but these methods are more suitable for simple

datasets.
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